4.7 Article

JMJD5 Regulates Cell Cycle and Pluripotency in Human Embryonic Stem Cells

期刊

STEM CELLS
卷 32, 期 8, 页码 2098-2110

出版社

WILEY
DOI: 10.1002/stem.1724

关键词

JMJD5; Human embryonic stem cells; G1 phase; Pluripotency; CDKN1A (p21)

资金

  1. California Institute of Regenerative Medicine [RL1-00100]

向作者/读者索取更多资源

In mammalian embryos, embryonic stem cells (ESCs) and induced pluripotent cells, a shortened G1 phase is correlated with the pluripotent state. To molecularly define this phase, we compared transcripts from the shortened G1 of human ESCs (hESCs) with those from the longer G1 of derived endoderm. We identified JMJD5, a JmjC (Jumonji C) domain containing protein that, when depleted in hESCs, causes the accumulation of cells in G1 phase, loss of pluripotency, and subsequent differentiation into multiple lineages, most prominently ectoderm and trophectoderm. Furthermore, we demonstrate that the JMJD5 phenotype is caused by the upregulation of CDKN1A (p21), as depleting both JMJD5 and CDKN1A (p21) in hESCs restores the rapid G1 phase and rescues the pluripotent state. Overall, we provide genetic and biochemical evidence that the JMJD5/CDKN1A (p21) axis is essential to maintaining the short G1 phase which is critical for pluripotency in hESCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据