4.7 Article

In Situ Mechanotransduction Via Vinculin Regulates Stem Cell Differentiation

期刊

STEM CELLS
卷 31, 期 11, 页码 2467-2477

出版社

WILEY
DOI: 10.1002/stem.1490

关键词

Mesenchymal stem cell; Cellular mechanotransduction; Differentiation; Myogenesis

资金

  1. NIH New Innovator Award [1DP02 OD006460]
  2. NSF predoctoral fellowship

向作者/读者索取更多资源

Human mesenchymal stem cell (hMSC) proliferation, migration, and differentiation have all been linked to extracellular matrix stiffness, yet the signaling pathway(s) that are necessary for mechanotransduction remain unproven. Vinculin has been implicated as a mechanosensor in vitro, but here we demonstrate its ability to also regulate stem cell behavior, including hMSC differentiation. RNA interference-mediated vinculin knockdown significantly decreased stiffness-induced MyoD, a muscle transcription factor, but not Runx2, an osteoblast transcription factor, and impaired stiffness-mediated migration. A kinase binding accessibility screen predicted a cryptic MAPK1 signaling site in vinculin which could regulate these behaviors. Indeed, reintroduction of vinculin domains into knocked down cells indicated that MAPK1 binding site-containing vinculin constructs were necessary for hMSC expression of MyoD. Vinculin knockdown does not appear to interfere with focal adhesion assembly, significantly alter adhesive properties, or diminish cell traction force generation, indicating that its knockdown only adversely affected MAPK1 signaling. These data provide some of the first evidence that a force-sensitive adhesion protein can regulate stem cell fate. Stem Cells2013;31:2467-2477

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据