4.7 Article

Elevated Id2 Expression Results in Precocious Neural Stem Cell Depletion and Abnormal Brain Development

期刊

STEM CELLS
卷 31, 期 5, 页码 1010-1021

出版社

WILEY-BLACKWELL
DOI: 10.1002/stem.1351

关键词

Neural stem cells; Id2; Brain tumor; Glioma; Medulloblastoma; Self-renewal; Apoptosis; Seizure; CyclinG1; Rett syndrome

资金

  1. NIH [NS031348]
  2. TJL Cancer Center Support grant [CA034196]

向作者/读者索取更多资源

Id2 is a helix-loop-helix transcription factor essential for normal development, and its expression is dysregulated in many human neurological conditions. Although it is speculated that elevated Id2 levels contribute to the pathogenesis of these disorders, it is unknown whether dysregulated Id2 expression is sufficient to perturb normal brain development or function. Here, we show that mice with elevated Id2 expression during embryonic stages develop microcephaly, and that females in particular are prone to generalized tonic-clonic seizures. Analyses of Id2 transgenic brains indicate that Id2 activity is highly cell context specific: elevated Id2 expression in naive neural stem cells (NSCs) in early neuroepithelium induces apoptosis and loss of NSCs and intermediate progenitors. Activation of Id2 in maturing neuroepithelium results in less severe phenotypes and is accompanied by elevation of G1 cyclin expression and p53 target gene expression. In contrast, activation of Id2 in committed intermediate progenitors has no significant phenotype. Functional analysis with Id2-overexpressing and Id2-null NSCs shows that Id2 negatively regulates NSC self-renewal in vivo, in contrast to previous cell culture experiments. Deletion of p53 function from Id2-transgenic brains rescues apoptosis and results in increased incidence of brain tumors. Furthermore, Id2 overexpression normalizes the increased self-renewal of p53-null NSCs, suggesting that Id2 activates and modulates the p53 pathway in NSCs. Together, these data suggest that elevated Id2 expression in embryonic brains can cause deregulated NSC self-renewal, differentiation, and survival that manifest in multiple neurological outcomes in mature brains, including microcephaly, seizures, and brain tumors. STEM CELLS 2013;31:1010-1021

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据