4.7 Article

Human Bone Marrow-Derived Mesenchymal Stem Cells Suppress Human Glioma Growth Through Inhibition of Angiogenesis

期刊

STEM CELLS
卷 31, 期 1, 页码 146-155

出版社

WILEY-BLACKWELL
DOI: 10.1002/stem.1247

关键词

Angiogenesis; Mesenchymal stem cells; Glioma; Platelet derived growth factor; Interleukin-1 beta

资金

  1. SingHealth Foundation
  2. National Medical Research Council, Singapore

向作者/读者索取更多资源

Tumor tropism of human bone marrow-derived mesenchymal stem cells (MSC) has been exploited for the delivery of therapeutic genes for anticancer therapy. However, the exact contribution of these cells in the tumor microenvironment remains unknown. In this study, we examined the biological effect of MSC on tumor cells. The results showed that MSC inhibited the growth of human glioma cell lines and patient-derived primary glioma cells in vitro. Coadministration of MSC and glioma cells resulted in significant reduction in tumor volume and vascular density, which was not observed when glioma was injected with immortalized normal human astrocytes. Using endothelial progenitor cells (EPC) from healthy donors and HUVEC endothelial cells, the extent of EPC recruitment and capacity to form endothelial tubes was significantly impaired in conditioned media derived from MSC/glioma coculture, suggesting that MSC suppressed tumor angiogenesis through the release of antiangiogenic factors. Further studies using antibody array showed reduced expression of platelet-derived growth factor (PDGF)-BB and interleukin (IL)-1 beta in MSC/glioma coculture when compared with controls. In MSC/glioma coculture, PDGF-BB mRNA and the corresponding proteins (soluble and membrane bound forms) as well as the receptors were found to be significantly downregulated when compared with that of glioma cocultured with normal human astrocytes or glioma monoculture. Furthermore, IL-1 beta, phosphorylated Akt, and cathepsin B proteins were also reduced in MSC/glioma. Taken together, these data indicated that the antitumor effect of MSC may be mediated through downregulation of PDGF/PDGFR axis, which is known to play a key role in glioma angiogenesis. STEM CELLS 2013;31:146-155

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据