4.7 Article

Zfp281 Functions as a Transcriptional Repressor for Pluripotency of Mouse Embryonic Stem Cells

期刊

STEM CELLS
卷 29, 期 11, 页码 1705-1716

出版社

WILEY
DOI: 10.1002/stem.736

关键词

Zfp281; Nanog; Embryonic stem cells; Transcriptional repressor; Self-renewal; Pluripotency

资金

  1. Black Family Stem Cell Institute at Mount Sinai School of Medicine
  2. New York State Department of Health [N09G315]
  3. NIH [1R01-GM095942-01A1]

向作者/读者索取更多资源

Embryonic stem cells (ESCs) derived from preimplantation blastocysts have unique self-renewal and multilineage differentiation properties that are controlled by key components of a core regulatory network including Oct4, Sox2, and Nanog. Understanding molecular underpinnings of these properties requires identification and characterization of additional factors that act in conjunction with these key factors in ESCs. We have previously identified Zfp281, a Kruppel-like zinc finger transcription factor, as an interaction partner of Nanog. We now present detailed functional analyses of Zfp281 using a genetically ablated null allele in mouse ESCs. Our data show that while Zfp281 is dispensable for establishment and maintenance of ESCs, it is required for their proper differentiation in vitro. We performed microarray profiling in combination with previously published datasets of Zfp281 global target gene occupancy and found that Zfp281 mainly functions as a repressor to restrict expression of many stem cell pluripotency genes. In particular, we demonstrated that deletion of Zfp281 resulted in upregulation of Nanog at both the transcript and protein levels with concomitant compromised differentiation of ESCs during embryoid body culture. Chromatin immunoprecipitation experiments demonstrated that Zfp281 is required for Nanog binding to its own promoter, suggesting that Nanog-associated repressive complex(es) involving Zfp281 may fine-tune Nanog expression for pluripotency of ESCs. STEM CELLS 2011;29:1705-1716

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据