4.7 Article

Myoblast-Derived Neuronal Cells Form Glutamatergic Neurons in the Mouse Cerebellum

期刊

STEM CELLS
卷 28, 期 10, 页码 1839-1847

出版社

WILEY-BLACKWELL
DOI: 10.1002/stem.509

关键词

REST; REST-VP16; Myoblasts; Glutamatergic neurons; Cerebellum

资金

  1. American Cancer Society [RSG-09-273-01DDC]
  2. NIH [DA23069, CA81255, CA97124]

向作者/读者索取更多资源

Production of neurons from non-neural cells has far-reaching clinical significance. We previously found that myoblasts can be converted to a physiologically active neuronal phenotype by transferring a single recombinant transcription factor, REST-VP16, which directly activates target genes of the transcriptional repressor, REST. However, the neuronal subtype of M-RV cells and whether they can establish synaptic communication in the brain have remained unknown. M-RV cells engineered to express green fluorescent protein (M-RV-GFP) had functional ion channels but did not establish synaptic communication in vitro. However, when transplanted into newborn mice cerebella, a site of extensive postnatal neurogenesis, these cells expressed endogenous cerebellar granule precursors and neuron proteins, such as transient axonal glycoprotein-1, neurofilament, type-III beta-tubulin, superior cervical ganglia-clone 10, glutamate receptor-2, and glutamate decarboxylase. Importantly, they exhibited action potentials and were capable of receiving glutamatergic synaptic input, similar to the native cerebellar granule neurons. These results suggest that M-RV-GFP cells differentiate into glutamatergic neurons, an important neuronal subtype, in the postnatal cerebellar milieu. Our findings suggest that although activation of REST-target genes can reprogram myoblasts to assume a general neuronal phenotype, the subtype specificity may then be directed by the brain microenvironment. STEM CELLS 2010; 28: 1839-1847

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据