4.7 Article

Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells

期刊

STEM CELLS
卷 26, 期 6, 页码 1425-1435

出版社

WILEY-BLACKWELL
DOI: 10.1634/stemcells.2007-1076

关键词

platelet-derived growth factor-D; epithelial-mesenchymal transition; mammalian target of rapamycin; nuclear factor-kappa B; E-cadherin; vimentin

资金

  1. NCI NIH HHS [5R01-CA108535-04, R01 CA164318, R01 CA108535, R01 CA132794] Funding Source: Medline

向作者/读者索取更多资源

The majority of human malignancies are believed to have epithelial origin, and the progression of cancer is often associated with a transient process named epithelial-mesenchymal transition (EMT). EMT is characterized by the loss of epithelial markers and the gain of mesenchymal markers that are typical of cancer stem-like cells, which results in increased cell invasion and metastasis in vivo. Therefore, it is important to uncover the mechanistic role of factors that may induce EMT in cancer progression. Studies have shown that platelet-derived growth factor (PDGF) signaling contributes to EMT, and more recently, PDGF-D has been shown to regulate cancer cell invasion and angiogenesis. However, the mechanism by which PDGF-D promotes invasion and metastases and whether it is due to the acquisition of EMT phenotype remain elusive. For this study, we established stably transfected PC3 cells expressing high levels of PDGF-D, which resulted in the significant induction of EMT as shown by changes in cellular morphology concomitant with the loss of E-cadherin and zonula occludens-1 and gain of vimentin. We also found activation of mammalian target of rapamycin and nuclear factor-kappa B, as well as Bcl-2 overexpression, in PDGF-D PC3 cells, which was associated with enhanced adhesive and invasive behaviors. More importantly, PDGF-D-overexpressing PC3 cells showed tumor growth in SCID mice much more rapidly than PC3 cells. These results provided a novel mechanism by which PDGF-D promotes EMT, which in turn increases tumor growth, and these results further suggest that PDGF-D could be a novel therapeutic target for the prevention and/or treatment of prostate cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据