4.3 Article

Separation of SSEA-4 and TRA-1-60 Labelled Undifferentiated Human Embryonic Stem Cells from A Heterogeneous Cell Population Using Magnetic-Activated Cell Sorting (MACS) and Fluorescence-Activated Cell Sorting (FACS)

期刊

STEM CELL REVIEWS AND REPORTS
卷 5, 期 1, 页码 72-80

出版社

SPRINGER
DOI: 10.1007/s12015-009-9054-4

关键词

Fluorescence activated cell sorting; Magnetic activated cell sorting; Human embryonic stem cells; Hepatocellular carcinoma cells

资金

  1. National University of Singapore [R-174-000-089133]
  2. National Medical Research Council, Singapore [R-174-000103-213]

向作者/读者索取更多资源

A major concern in human embryonic stem cell (hESC)-derived cell replacement therapy is the risk of tumorigenesis from undifferentiated hESCs residing in the population of hESC-derived cells. Separation of these undifferentiated hESCs from the differentiated derivatives using cell sorting methods may be a plausible approach in overcoming this problem. We therefore explored magnetic activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) to separate labelled undifferentiated hESCs from a heterogeneous population of hESCs and hepatocellular carcinoma cells (HepG2) deliberately mixed respectively at different ratios (10: 90, 20: 80, 30: 70, 40: 60 and 50: 50) to mimic a standard in vitro differentiation protocol, instead of using a hESC-differentiated cell population, so that we could be sure of the actual number of cells separated. HES-3 and HES-4 cells were labelled in separate experiments for the stem cell markers SSEA-4 and TRA-1-60 using primary antibodies. Anti-PE magnetic microbeads that recognize the PE-conjugated SSEA-4 labelled hESCs was added to the heterogeneous cell mixture and passed through the MACS column. The cells that passed through the column ('flow-through' fraction) and those retained ('labelled' fraction') were subsequently analysed using FACS. The maximum efficacy of hESCs retention using MACS was 81.0 +/- 2.9% (HES-3) and 83.6 +/- 4.2% (HES-4). Using FACS, all the undifferentiated hESCs labelled with the two cell-surface markers could be removed by selective gating. Both hESCs and HepG2 cells in the 'flow-through' fraction following MACS separation were viable in culture whereas by FACS separation only the HepG2 cells were viable. FACS efficiently helps to eliminate the undifferentiated hESCs based on their cell-surface antigens expressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据