4.5 Article

Mathematical Modeling of VOD Oxygen Nozzle Jets

期刊

STEEL RESEARCH INTERNATIONAL
卷 82, 期 3, 页码 249-259

出版社

WILEY-BLACKWELL
DOI: 10.1002/srin.201000108

关键词

VOD; De Laval nozzle; Mathematical modeling; turbulence; jet domain; ambient pressure; flow pattern; jet width; ambient temperature

资金

  1. European Community

向作者/读者索取更多资源

This study has focused on numerically exploring the oxygen flow in the convergent-divergent De Laval nozzle. The De Laval nozzle has been commonly used as oxygen outlet at the lance tip in the vacuum oxygen decarburization (VOD) process. The nozzle geometry used in an active VOD plant was investigated by isentropic nozzle theory as well as by numerical modeling. Since an optimal nozzle design is only valid for a certain ambient pressure, one VOD nozzle will be less efficient for a large part of the pressure cycle. Different ambient pressures were used in the calculations that were based on the De Laval nozzle theory. Flow patterns of the oxygen jet under different ambient pressures were studied and the flow information at different positions from the nozzle was analyzed. In addition, the study compared the effects of different ambient temperatures on jet velocity and dynamic pressure. The predictions revealed that the modeling results obtained with the CFD modeling showed incorrect flow expansion, which agreed well with the results from the De Laval theory. Moreover, a little under-expansion is somewhat helpful to improve the dynamic pressure. The jet dynamic pressure and its width for the specific nozzle geometry have also been studied. It has been observed that an altering ambient pressure can influence the jet momentum and its width. In addition, a high ambient temperature has a positive effect on the improvement of the jet dynamic pressure.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据