4.5 Article

Simulating competing risks data in survival analysis

期刊

STATISTICS IN MEDICINE
卷 28, 期 6, 页码 956-971

出版社

WILEY
DOI: 10.1002/sim.3516

关键词

multistate model; cause-specific hazard; subdistribution hazard; latent failure time; model misspecification

资金

  1. Deutsche Forschungsgemeinschaft [FOR 534]

向作者/读者索取更多资源

Competing risks analysis considers time-to-first-event ('survival time') and the event type ('cause'), possibly subject to right-censoring. The cause-, i.e. event-specific hazards, completely determine the competing risk process, but simulation studies often fall back on the much criticized latent failure time model. Cause-specific hazard-driven simulation appears to be the exception; if done, usually only constant hazards are considered, which will be unrealistic in many medical situations. We explain simulating competing risks data based on possibly time-dependent cause-specific hazards. The simulation design is as easy as any other, relies on identifiable quantities only and adds to our understanding of the competing risks process. In addition, it immediately generalizes to more complex multistate models. We apply the proposed simulation design to computing the least false parameter of a misspecified proportional subdistribution hazard model, which is a research question of independent interest in competing risks. The simulation specifications have been motivated by data on infectious complications in stem-cell transplanted patients, where results from cause-specific hazards analyses were difficult to interpret in terms of cumulative event probabilities. The simulation illustrates that results from a misspecified proportional subdistribution hazard analysis can be interpreted as a tune-averaged effect on the cumulative event probability scale. Copyright (C) 2009 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据