4.5 Article

In Vivo lenCervical Facet Joint Capsule Deformation During Flexion-Extension

期刊

SPINE
卷 39, 期 8, 页码 E514-E520

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/BRS.0000000000000235

关键词

adjacent segment; whiplash; arthrodesis; fusion; kinematics; zygapophysial; cervical; spine

资金

  1. NIH/NIAMS [1R03AR056265]
  2. Cervical Spine Research Society funds

向作者/读者索取更多资源

Study Design. Nonrandomized controlled cohort. Objective. To characterize subaxial cervical facet joint kinematics and facet joint capsule (FJC) deformation during in vivo, dynamic flexion-extension. To assess the effect of single-level anterior arthrodesis on adjacent segment FJC deformation. Summary of Background Data. The cervical facet joint has been identified as the most common source of neck pain, and it is thought to play a role in chronic neck pain related to whiplash injury. Our current knowledge of cervical facet joint kinematics is based on cadaveric mechanical testing. Methods. Fourteen asymptomatic controls and 9 C5-C6 arthrodesis patients performed full range of motion flexion-extension while biplane radiographs were collected at 30 Hz. A volumetric model-based tracking process determined 3-dimensional vertebral position with submillimeter accuracy. FJC fibers were modeled and grouped into anterior, lateral, posterior-lateral, posterior, and posterior-medial regions. FJC fiber deformations (total, shear, and compression-distraction) relative to the static position were determined for each cervical motion segment (C2-C3 through C6-C7) during flexion-extension. Results. No significant differences in the rate of fiber deformation in flexion were identified among motion segments (P = 0.159); however, significant differences were observed among fiber regions (P < 0.001). Significant differences in the rate of fiber deformation in extension were identified among motion segments (P < 0.001) and among fiber regions (P = 0.001). The rate of FJC deformation in extension adjacent to the arthrodesis was 45% less than that in corresponding motion segments in control subjects (P = 0.001). Conclusion. In control subjects, FJC deformations are significantly different among vertebral levels and capsule regions when vertebrae are in an extended orientation. In a flexed orientation, FJC deformations are different only among capsule regions. Single-level anterior arthrodesis is associated with significantly less FJC deformation adjacent to the arthrodesis when the spine is in an extended orientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据