4.7 Article

Quantum chemical study of the donor-bridge-acceptor triphenylamine based sensitizers

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2013.02.045

关键词

Dye-sensitized solar cells; Highest occupied molecular orbitals; Lowest unoccupied molecular orbitals; Recombination; Electron injection; Light harvesting efficiency

资金

  1. King Khalid University

向作者/读者索取更多资源

Quantum chemical calculations were carried to investigate the electron coupling, electron injection, electronic and photophysical properties of 2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl) penta-2,4-dienoic acid (TC4) and its derivatives. Geometries have been optimized by using density functional theory at B3LYP/6-31G** level of theory. The highest occupied molecular orbitals (HOMOs) are delocalized on triphenylamine (TPA) units while lowest unoccupied molecular orbitals LUMOs are localized on anchoring groups. The mono-methyl is more significant to lowering the energy gap than di and tri-methyl substituted ones. The HOMOs of the dyes are below the redox couple and LUMOs are above the conduction band of TiO2. We have explained the recombination barrier on the basis of distortion and coplanarity. The excitation energies have been computed by time dependent density functional theory at PCM-CAM-B3LYP/6-31G** level of theory. Enhanced bridge is encouraging to promote the electron injection, electronic coupling constant and light harvesting efficiency. Generally, electron injection, electronic coupling constant and light harvesting efficiency of new designed sensitizers are higher than TC4. This revealed that new materials would be efficient photosensitizers. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据