4.7 Article

Sensitive and selective chemiluminescence assay for hydrogen peroxide in exhaled breath condensate using nanoparticle-based catalysis

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.saa.2013.01.062

关键词

Co3O4 nanoparticles; alpha-Fe2O3 nanorods; NiO nanoparticles; Hydrogen peroxide; Exhaled breath condensate

资金

  1. Fundamental Research Funds for the Central Universities [GK 20091004]
  2. National Natural Science Foundation of China [30872371]

向作者/读者索取更多资源

The catalytic properties of cubiform Co3O4 nanoparticles, alpha-Fe2O3 nanorods, and NiO nanoparticles were studied using both microarray method and FI-CL method. These nanoarticles exhibit high specific catalytic effects on the chemiluminescence (CL) reaction of the luminol-H2O2 system in alkaline solution compared with other common catalysts. A reaction mechanism is described. It provides new insights into the application of nanoparticle materials. The CL method based on the use of the Co3O4 nanoparticles is ultrasensitive and particularly selective. Therefore, it was applied to the analysis of H2O2 which can be determined in the concentration range from 1.0 nM to 1000 nM, with a detection limit of 0.3 nM. The relative standard deviation is 2.1% at 0.1 mu M of H2O2 (for n = 11). The method was successfully applied to the determination of trace quantities of H2O2 in exhaled breath condensate (EBC) where it is a mediator of oxidative stress and a promising biomarker for diagnosing. The assay requires a small sample and no incubation time, and has an analytical runtime of <1 min. It is timesaving and suitable for larger studies. The levels of H2O2 in EBC are found to be elevated in healthy subjects (average = 0.54 nM), rheum subjects (average = 0.24 nM), and feverish subjects (average = 0.16 nM). Our data suggested that the average H2O2 concentration of EBC from feverish subjects was significantly higher than healthy subjects and rheumatic subjects. (c) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据