4.4 Article Proceedings Paper

Integrated Permeability Analysis in Tight and Brecciated Carbonate Reservoir

期刊

SPE RESERVOIR EVALUATION & ENGINEERING
卷 15, 期 6, 页码 624-635

出版社

SOC PETROLEUM ENG
DOI: 10.2118/131593-PA

关键词

-

向作者/读者索取更多资源

Permeability provides a measure of the ability of a porous medium to transmit fluid and is significant in evaluating reservoir productivity. A case study that compares different methods of permeability prediction in a complex carbonate reservoir is presented in this paper. Presence of siliciclastic fines and diagenetic minerals (e.g. dolomite) within carbonate breccias has resulted in a tight and heterogeneous carbonate reservoir in this case. Permeability estimations from different methods are discussed and compared. In the first part of the paper, permeability measurements from conventional core analysis (CCAL), mercury-injection capillary pressure (MICP) tests, modular formation dynamic tests (MDTs), and nuclear-magnetic-resonance (NMR) logs are discussed. Different combinations of methods can be helpful in permeability calculation, but depending on the nature and scale of each method, permeability assessment in heterogeneous reservoirs is a considerable challenge. Among these methods, the NMR log provides the most continuous permeability prediction. In the second part of the paper, the measured individual permeabilities are combined and calibrated with the NMR-derived permeability. The conventional NMR-based free-fluid (Timur-Coates) model is used to compute the permeability. The NMR-estimated permeability is influenced by wettability effects, presence of isolated pores, and residual oil in the invaded zone. A new modified Timur-Coates model is established on the basis of fluid saturations and isolated pore volumes (PV) of the rock. This model yields a reasonable correlation with the scaled core-derived permeabilities. However, because of the reservoir heterogeneity, particularly in the brecciated intervals, discrepancies between the core data and the modified permeability model are expected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据