4.4 Article Proceedings Paper

Alkaline/Surfactant/Polymer Flood: From the Laboratory to the Field

期刊

SPE RESERVOIR EVALUATION & ENGINEERING
卷 14, 期 6, 页码 702-712

出版社

SOC PETROLEUM ENG
DOI: 10.2118/129164-PA

关键词

-

向作者/读者索取更多资源

After two decades of relative calm, chemical enhanced-oil-recovery (EOR) technologies are currently revitalized globally. Techniques such as alkaline/surfactant/polymer (ASP) flooding, originally developed by Shell, have the potential to recover significant fractions of remaining oil at a CO, footprint that is low compared with, for example, thermal EOR, and they do not depend on a valuable miscible agent such as hydrocarbon gas. On the other hand, chemical EOR technologies typically require large quantities of chemical products such as surfactants and polymers, which must be transported to, and handled safely in, the field. Despite rising industry interest in chemical EOR, until today only polymer flooding has been applied on a significant scale, whereas applications of surfactant/polymer or alkaline ASP flooding were limited to multiwell pilots or to small field scale. Next to the oil-price fluctuations of the past two decades, technical reasons that discouraged the application of chemical EOR are excessive formation of carbonate or silica scale and formation of strong emulsions in the production facilities. Having identified significant target-oil volumes for ASP flooding, Petroleum Development Oman (PDO), supported by Shell Technology Oman, carried out a sequence of single-well pilots in three fields, sandstone and carbonate, to assess the flooding potential of tailor-made chemical formulations under real subsurface conditions, and to quantify the benefits of full-field ASP developments. This paper discusses the extensive design process that was followed. Starting from a description of the optimization of chemical phase behavior in test-tube and coreilood experiments, we elaborate how the key chemical and flow properties of an ASP flood are captured to calibrate a comprehensive reservoir-simulation model. Using this model, we evaluate PDO's single-well pilots and demonstrate how these results are used to design a pattern-flood pilot.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据