4.2 Article

A Robust Steady-State Model for Flowing-Fluid Temperature in Complex Wells

期刊

SPE PRODUCTION & OPERATIONS
卷 24, 期 2, 页码 269-276

出版社

SOC PETROLEUM ENG
DOI: 10.2118/109765-PA

关键词

-

向作者/读者索取更多资源

This paper presents an analytic model for computing the wellbore-fluid-temperature profile for steady fluid flow. Although wells with a constant-deviation angle can be handled with existing analytic models, complex well architectures demand rigorous treatment. For example, changing geothermal-temperature-gradient and deepwater wells present significant challenges. Additionally, available analytic models rarely provide calculation methods for various required thermal parameters, such as the Joule-Thompson (J-T) coefficient and fluid expansivity. The approach taken in this study entails dividing the wellbore into many sections of uniform thermal properties and deviation angle. The governing differential equation is solved for each section. with fluid temperature from the prior section as the boundary condition. This piecewise approach makes the model versatile, allowing step-by-step calculation of fluid temperature for the entire wellbore. We present simple, thermodynamically sound approaches for estimating thermal parameters. Success is indicated when performance of the proposed model is compared with data from three wells, producing two-phase gas/oil mixture, single-phase oil, and single-phase gas. Sensitivity of the estimated fluid temperatures to various thermal properties is also examined with our model. Overall, the effects of the J-T coefficient and liquid expansivity are found to be significant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据