4.6 Article

Reduced-Order Modeling for Compositional Simulation by Use of Trajectory Piecewise Linearization

期刊

SPE JOURNAL
卷 19, 期 5, 页码 858-872

出版社

SOC PETROLEUM ENG
DOI: 10.2118/163634-PA

关键词

-

资金

  1. Stanford University Reservoir Simulation Research and Smart Fields Consortia
  2. Stanford Graduate Fellowship Program

向作者/读者索取更多资源

Compositional simulation can be very demanding computationally as a result of the potentially large number of system unknowns and the intrinsic nonlinearity of typical problems. In this work, we develop a reduced-order modeling procedure for compositional simulation. The technique combines trajectory piecewise linearization (TPWL) and proper orthogonal decomposition (POD) to provide a highly efficient surrogate model. The compositional POD-TPWL method expresses new solutions in terms of linearizations around states generated (and saved) during previously simulated training runs. High-dimensional states are projected (optimally) into a low-dimensional subspace by use of POD. The compositional POD-TPWL model is based on a molar formulation that uses pressure and overall component mole fractions as the primary unknowns. Several new POD-TPWL treatments, including the use of a Petrov-Galerkin projection to reduce the number of equations (rather than the Galerkin projection, which was applied previously), and a new procedure for determining which saved state to use for linearization are incorporated into the method. Results are presented for heterogeneous 3D reservoir models containing oil and gas phases with up to six hydrocarbon components. Reasonably close agreement between full-order reference solutions and compositional POD-TPWL simulations is demonstrated for the cases considered. Construction of the POD-TPWL model requires preprocessing overhead computations equivalent to approximately three or four full-order runs. Runtime speedups by use of POD-TPWL are, however, very significant-up to a factor of 800 for the cases considered. The POD-TPWL model is thus well suited for use in computational optimization, in which many simulations must be performed, and we present an example demonstrating its application for such a problem.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据