4.6 Article

Development of an Efficient Embedded Discrete Fracture Model for 3D Compositional Reservoir Simulation in Fractured Reservoirs

期刊

SPE JOURNAL
卷 19, 期 2, 页码 289-303

出版社

SOC PETROLEUM ENG
DOI: 10.2118/154246-PA

关键词

-

资金

  1. Reservoir Simulation Joint Industry Project at the Center for Petroleum and Geosystems Engineering at the University of Texas at Austin, Austin, Texas
  2. Gas Flooding Joint Industry Project at Pennsylvania State University, University Park, Pennsylvania

向作者/读者索取更多资源

Many naturally fractured reservoirs around the world have depleted significantly, and improved-oil-recovery (IOR) processes are necessary for further development. Hence, the modeling of fractured reservoirs has received increased attention recently. Accurate modeling and simulation of naturally fractured reservoirs (NFRs) is still challenging because of permeability anisotropies and contrasts. Nonphysical abstractions inherent in conventional dual-porosity and dual-permeability models make them inadequate for solving different fluid-flow problems in fractured reservoirs. Also, recent technologies for discrete fracture modeling may suffer from large simulation run times, and the industry has not used such approaches widely, even though they give more-accurate representations of fractured reservoirs than dual-continuum models. We developed an embedded discrete fracture model (DFM) for an in-house compositional reservoir simulator that borrows the dual-medium concept from conventional dual-continuum models and also incorporates the effect of each fracture explicitly. The model is compatible with existing finite-difference reservoir simulators. In contrast to dual-continuum models, fractures have arbitrary orientations and can be oblique or vertical, honoring the complexity of a typical NFR. The accuracy of the embedded DFM is confirmed by comparing the results with the fine-grid, explicit-fracture simulations for a case study including orthogonal fractures and a case with a nonaligned fracture. We also perform a grid-sensitivity study to show the convergence of the method as the grid is refined. Our simulations indicate that to achieve accurate results, the embedded discrete fracture model may only require moderate mesh refinement around the fractures and hence offers a computationally efficient approach. Furthermore, examples of waterflooding, gas injection, and primary depletion are presented to demonstrate the performance and applicability of the developed method for simulating fluid flow in NFRs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据