4.6 Article Proceedings Paper

Wettability Alteration and Foam Mobility Control in a Layered, 2D Heterogeneous Sandpack

期刊

SPE JOURNAL
卷 17, 期 4, 页码 1207-1220

出版社

SOC PETROLEUM ENG
DOI: 10.2118/141462-PA

关键词

-

向作者/读者索取更多资源

In a layered, 2D heterogeneous sandpack with a 19:1 permeability contrast that was preferentially oil-wet, the recovery by water-flood was only 49.1% of original oil in place (OOIP) because of injected water flowing through the high-permeability zone, leaving the low-permeability zone unswept. To enhance oil recovery, an anionic surfactant blend (NI) was injected that altered the wettability and lowered the interfacial tension (IFT). Once LET was reduced to ultralow values, the adverse effect of capillarity retaining oil was eliminated. Gravity-driven vertical countercurrent flow then exchanged fluids between high- and low-permeability zones during a 42-day system shut-in. Cumulative recovery after a subsequent foam flood was 94.6% OOIP, even though foam strength was weak. Recovery with chemical flood (incremental recovered oil/waterflood remaining oil) was 89.4%. An alternative method is to apply foam mobility control as a robust viscous-force-dominant process with no initial surfactant injection and shut-in. The light crude oil studied in this paper was extremely detrimental to foam generation. However, the addition of lauryl betaine to NI (NIB) at a weight ratio of 1:2 (NI:lauryl betaine) made the new blend a good foaming agent with and without the presence of the crude oil. NIB by itself as an IFT-reducing and foaming agent is shown to be effective in various secondary and tertiary alkaline/surfactant/foam (ASF) processes in water-wet 1D homogeneous sandpacks and in an oil-wet heterogeneous layered system with a 34:1 permeability ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据