4.6 Article Proceedings Paper

CO2-Soluble, Nonionic, Water-Soluble Surfactants That Stabilize CO2-in-Brine Foams

期刊

SPE JOURNAL
卷 17, 期 4, 页码 1172-1185

出版社

SOC PETROLEUM ENG
DOI: 10.2118/129907-PA

关键词

-

向作者/读者索取更多资源

Several commercially available and a few experimental, nonionic surfactants were identified that are capable of dissolving in carbon dioxide (CO2) in dilute concentration at typical minimum-miscibility-pressure (MMP) conditions and, upon mixing with brine in a high-pressure windowed cell, stabilizing CO2-in-brine foams. These slightly CO2-soluble, water-soluble surfactants include branched alkylphenol ethoxylates, branched alkyl ethoxylates, a fatty-acid-based surfactant, and a predominantly linear ethoxylated alcohol. Many of the surfactants were between 0.02 to 0.06 wt% soluble in CO2 at 1,500 psia and 25 degrees C, and most demonstrated some capacity to stabilize foam. The most- stable foams observed in a high-pressure windowed cell were attained with branched alkylphenol ethoxylates, several of which were studied in high-pressure small-angle-neutron-scattering (HP SANS) tests, transient mobility tests using Berea sandstone cores, and high-pressure computed-tomography (CT)-imaging tests using polystyrene cores. HP SANS analysis of foams residing in a small windowed cell demonstrated that the nonylphenol ethoxylate SURFONIC (R) N-150 [15 ethylene oxide (EO) groups] generated emulsions with a greater concentration of droplets and a broader distribution of droplet sizes than the shorter-chain analogs with 9-12 ethoxylates. The in-situ formation of weak foams was verified during transient mobility tests by measuring the pressure drop across a Berea sandstone core as a CO2/surfactant solution was injected into a Berea sandstone core initially saturated with brine; the pressure-drop values when surfactant was dissolved in the CO2 were at least twice those attained when pure CO2 was injected into the same brine-saturated core. The greatest mobility reduction was achieved when surfactant was added both to the brine initially in the core and to the injected CO2. CT imaging of CO2 invading a polystyrene core initially saturated with 5 wt% KI brine indicated that despite the oil-wet nature of this medium, a sharp foam front propagated through the core, and CO2 fingers that formed in the absence of a surfactant were completely suppressed by foams formed because of the addition of nonylphenol ethoxylate surfactant to the CO2 or the brine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据