4.5 Review

Stochastic Acceleration of Energetic Particles in the Heliosphere

期刊

SPACE SCIENCE REVIEWS
卷 176, 期 1-4, 页码 133-146

出版社

SPRINGER
DOI: 10.1007/s11214-011-9754-3

关键词

Particle acceleration; Diffusion; Cosmic ray; Energetic particle

资金

  1. NASA [NNX08AP91G, NNX09AG29G, NNX09AB24G, NNX06AG92G, NNX08AJ13G]
  2. NASA [NNX08AJ13G, 118550, 100055, 120963, NNX09AB24G, 95684, NNX08AP91G, NNX09AG29G] Funding Source: Federal RePORTER

向作者/读者索取更多资源

In this paper we assess possible roles of stochastic acceleration by random electric field and plasma motion in the production and transport of energetic particles in the heliosphere. Stochastic acceleration can occur in the presence of multiple small-scale magnetohydrodynamic waves propagating in different directions. Usually, this type of stochastic acceleration is closely related to particle pitch angle scattering or parallel diffusion. Given the values of the parallel diffusion coefficient inferred from the observations of cosmic ray modulation or other energetic particle phenomena in the heliosphere, stochastic acceleration by small-scale waves is much slower than acceleration by shock waves and it is also much slower than adiabatic cooling by the expansion of the solar wind; thus it is considered as inefficient for producing heliospheric energetic particles or for the modulation of cosmic rays. Another type of stochastic acceleration occurs when particles go through random compressions or expansions due to large-scale plasma motion. This acceleration mechanism could be very fast when the correlation time of the fluctuations in plasma compression is short compared to the diffusion time. Particle acceleration by an ensemble of small shock waves or intermittent long wavelength compressible turbulence belongs to this category. It tends to establish an asymptotic p (-3) universal distribution function quickly if there is no or little large-scale adiabatic cooling. Such a particle distribution will contain an infinite amount of pressure. Back reaction from the pressure is expected to modify the amplitude of plasma waves to an equilibrium state. At that point, the pressure of accelerated particles must remain finite and the accelerated particles could approach a p (-5) distribution function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据