4.5 Review

Implications of Rotation, Orbital States, Energy Sources, and Heat Transport for Internal Processes in Icy Satellites

期刊

SPACE SCIENCE REVIEWS
卷 153, 期 1-4, 页码 317-348

出版社

SPRINGER
DOI: 10.1007/s11214-010-9636-0

关键词

Satellites; Energy sources; Rotation; Tides; Orbital dynamics; Heat transfer

资金

  1. NASA
  2. Helmholtz Association

向作者/读者索取更多资源

Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites' interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites-as opposed to single objects-important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state-usually leading to the 1:1 spin orbit coupling-and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据