4.3 Article

Limits on vanadium oxide Mott metal-insulator transition field-effect transistors

期刊

SOLID-STATE ELECTRONICS
卷 54, 期 6, 页码 654-659

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.sse.2010.01.006

关键词

Functional oxides; Phase transitions; Transistors

向作者/读者索取更多资源

There have been numerous proposals for use of metal-oxide materials as an alternative to semiconductors in field-effect transistors (FET), as current Si FET technology inevitably encounters intrinsic scaling limitations. We report on device-independent power-delay characteristics of potential VO2-based field induced Mott transistors and compare scaling limits to that of Si. Since the critical electric field for metal-insulator transition (MIT) in VO2 is similar to the breakdown field of Si, and due to the inherent possibility of further scaling along one direction in VO2, both materials exhibit similar lower bounds on switching energy. MIT in VO2 results in free carrier concentration several orders of magnitude larger than that of Si, easily overcoming the carrier transit time limits of conventional semiconductor MOSFETs. VO2 switching speed is constrained by the kinetics of the phase transition and more importantly limited thermal dissipation. Our simple model predicts an intrinsic VO2 material lower bound switching time of the order of 0.5 ps at a power transfer of 01 mu W. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据