4.5 Article

Structural instability of cubic perovskite BaxSrxSr1-xCo1-yFeyO3-δ

期刊

SOLID STATE IONICS
卷 178, 期 35-36, 页码 1787-1791

出版社

ELSEVIER
DOI: 10.1016/j.ssi.2007.11.031

关键词

perovskite; oxygen vacancies; phase transition; Goldschmidt tolerance factor

向作者/读者索取更多资源

Cubic perovskites BaxSr1-xCo0.8Fe0.2O3-delta (BSCF) are among the most promising oxygen permeable membrane materials and high-performance cathode materials for intermediate temperature solid oxide fuel cells. Here, we show that cubic BSCF becomes unstable in air at intermediate temperatures and gradually transforms to a hexagonal perovskite on cooling. Cubic and hexagonal BSCF polymorphs were observed to coexist below 850-900 degrees C, and the amount of the hexagonal polymorph was shown to increase at the expense of the cubic polymorph with decreasing temperature. Different chemical composition of the two coexisting phases was inferred, but a complete transformation to the hexagonal polymorph was hindered by slow cation diffusion. Due to the sluggish kinetics, usual cooling rates lead to the meta-stable cubic BSCF, but over time the transition to the stable hexagonal polymorph may be detrimental to applications incorporating BSCF. We show that the transformation of the cubic to hexagonal polymorph of BSCF can be rationalized by the Goldschmidt tolerance factor and accordingly suppressed by appropriate substitutions. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据