4.7 Article

Electrochemical mechanisms of leakage-current-enhanced delamination and corrosion in Si photovoltaic modules

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 188, 期 -, 页码 273-279

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2018.09.010

关键词

Water reduction reaction; Hydrogen; Corrosion; Delamination; Leakage current

资金

  1. United States Department of Energy [DE-EE0007139]
  2. U.S. Department of Energy [DE-AC36-08-GO28308]
  3. National Renewable Energy Laboratory

向作者/读者索取更多资源

This paper analyzes the mechanisms for corrosion and delamination observed in Si photovoltaic modules subjected to high temperature and humidity with a negative-ground bias testing. Based on the thermodynamic data, the ionic component of the leakage current causes reduction reactions of water on the cathodic metallization, producing hydrogen gas and hydroxide ions. Ag fingers are strong catalysts for this reduction reaction compared to other materials used in solar cells and can be the initiation sites of corrosion and delamination caused by the electrochemical reactions. The produced hydrogen gas accumulates inside the module potentially producing a high gas pressure that can promote delamination, which is often preferentially initiated on metallization where the adhesion strength is lower [1-3]. The local basicity near the metal surface increases due to the hydroxide ion generation. Thus, the environment inside the encapsulant can be alkaline despite the presence of acetic acid decomposition products from the encapsulant. Corrosion of materials such as Si used in solar cells occurs and the extent depends on their corrosion resistance to the alkaline solution. This suggests that corrosion and delamination are interactive and promote the formation and propagation of one another.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据