4.7 Article

Environmental mechanisms of debonding in photovoltaic backsheets

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 120, 期 -, 页码 87-93

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2013.08.020

关键词

Backsheet debonding; Adhesion; Degradation; Aging; Delamination

资金

  1. Department of Energy through the Bay Area Photovoltaic Consortium [DE-EE0004946]
  2. U.S. Department of Energy [DE-AC36-08GO28308]
  3. National Renewable Energy Laboratory

向作者/读者索取更多资源

The backsheets used in photovoltaic modules are exposed to aggressive field environments that may include combined temperature cycles, moisture, and mechanical loads. The effects of the field environment on backsheet debonding, which can lead to module degradation (corrosion) and loss of function, are still not well understood or quantified. Employing a newly developed quantitative mechanics technique, we report the effect of aging on backsheet debond energy, including the separate effect of temperature, mechanical stress and relative humidity on debond growth rate. The debond energy of the backsheet decreased dramatically from 1000 to 27 J/m(2) within the first 750 h of exposure to hot (85 degrees C) and humid (85% RH) aging treatments. The debond growth rate increased up to 500-fold with small changes of temperature (10 degrees C) and relative humidity (20%). To elucidate the mechanisms of environmental debonding, we developed a fracture-kinetics model, where the molecular relaxation processes at the debond front are used to predict debond growth. The model and techniques form the fundamental basis to develop accelerated aging tests and long-term reliability predictions for photovoltaic backsheets. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据