4.7 Article

Gas-dependent bandgap and electrical conductivity of Cu2O thin films

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 108, 期 -, 页码 230-234

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2012.05.010

关键词

Oxide semiconductor; Cuprous oxide thin film; Bandgap; P-type conductivity; Hall effect; Feimi level

向作者/读者索取更多资源

Cuprous oxide (Cu2O) is a promising earth-abundant semiconductor for photovoltaic applications. Developing an understanding of the p-type conduction mechanism is vital to optimize the material. We have used a reactive magnetron sputtering system to fabricate Cu2O thin films. The bandgap, refractive index, mobility, density of hole, and electrical conductivity in the films have also been investigated. Our work shows that the films fabricated under nitrogen-rich condition exhibit wide bandgaps and low electrical conductivities while the films deposited under oxygen-rich condition have narrow bandgaps and high electrical conductivities. The results from the density functional theory are introduced to explain the gas dependence of the bandgap. A developed theoretical model based on Fermi-Dirac statistics shows that the high electrical conductivities originate from the acceptor levels located below Feimi level in the film. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据