4.7 Article

High temperature stability of dye solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 119, 期 -, 页码 36-50

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2013.04.017

关键词

Dye solar cells; Thermal stability; Accelerated testing; Electrolyte bleaching

资金

  1. European Union [246124]

向作者/读者索取更多资源

This work provides the state-of-the-art of dye solar cell chemical stability, assessed through accelerated ageing at temperatures up to 95 degrees C and shows that solvent-based dye solar cells (DSCs) can pass 1000 h/ 85 degrees C tests with less than 10% loss of performance. Prior work is reviewed and compared with recent inhouse results from DSCs based on three different solvents and two representative Ru dyes as well as the organic dye Y123. An industrial DSC toolbox of analysis methods, including IV testing at various light levels and in the dark,1PCE, EIS (at a single or at multiple cell voltages) and post mortem analysis, is used to better understand degradation mechanisms. For highly stable Z907-based cells, loss of performance due to high temperature ageing is dominated by loss of V-oc, rather than J(sc) or ff. Based on literature and this work, loss of I-3(-), resulting in partial bleaching of the electrolyte, appears to be strongly correlated with loss of performance upon high temperature storage, with the most stable systems investigated in this work displaying only marginal bleaching at temperatures above 80 degrees C. Two in situ methods, EIS under light at zero DC current and IPCE in the sub 450 nm region were used to quantitatively or semiquantitatively gauge electrolyte 12 concentration within the active area. The nature of I-3(-) degradation products still remains unknown. A lower limit of 68 kJ/mot was estimated for the activation energy of the rate determining step, which leads to increased dark currents and thus lowered lf, upon high temperature storage. In addition there is evidence from IPCE of some changes to the dye structure, especially in MPN and GBL-based electrolyte systems. Dye desorption and degradation of platinum catalytic activity was shown to occur to some degree at the highest temperatures, but the impact on cell performance from these two mechanisms upon high temperature stress testing is only minor. Y123 showed particularly good stability at elevated temperature, surpassing even Z907 in terms of durability. Further improved device seals may lead to continued improvement of DSC stability under the harshest environmental conditions even for materials with a better performance-to-cost ratio than Z907 or Y123. (C) 2013 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据