4.7 Article

Firing stability of SiNy/SiNx stacks for the surface passivation of crystalline silicon solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 96, 期 1, 页码 180-185

出版社

ELSEVIER
DOI: 10.1016/j.solmat.2011.09.051

关键词

Surface passivation; PERC solar cell; Silicon nitride; Screen-printing

资金

  1. German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety [0327529A]

向作者/读者索取更多资源

In the photovoltaic industry contacts to crystalline silicon are typically formed by firing of screen-printed metallization pastes. However, the stability of surface passivation layers during high temperature contact formation is a major challenge. Here, we investigate the thermal stability of the surface passivation by amorphous silicon nitride double layers (SiNy/SiNx). The SiNy passivation layer is silicon rich with refractive index larger than 3. Whereas the SiNx capping layer has a refractive index of 2.05. Compared to pure hydrogenated amorphous silicon, the nitrogen in the SiNy passivation layer improves the firing stability. We achieve an effective surface recombination velocity after a conventional co-firing process of (5.2 +/- 2) cm/s on p-type (1.5 Omega cm) FZ-silicon wafers at an injection density of 10(15) cm(-3). An analysis of the improved firing stability is presented based on FTIR and hydrogen effusion measurements. The incorporation of an SiNy/SiNx stack into the passivated rear of Cz silicon screen-printed solar cells results in an energy conversion efficiency of 18.3% compared to reference solar cells with conventional aluminum back surface field showing 17.9% efficiency. The short circuit current density increases by up to 0.8 mA/cm(2) compared to conventional solar cells due to the improved optical reflectance and rear side surface passivation. (C) 2011 Elsevier By. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据