4.7 Article

Comparison of various sol-gel derived metal oxide layers for inverted organic solar cells

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 95, 期 8, 页码 2194-2199

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2011.03.023

关键词

Al doped ZnO (AZO); ZnO; TiO(x); Sol-gel synthesis; Inverted Organic Solar cells; Charge selective extraction layer

向作者/读者索取更多资源

Inverted bulk-heterojunction solar cells have recently captured high interest due to their environmental stability as well as compatibility to mass production. This has been enabled by the development of solution processable n-type semiconductors, mainly TiO(2) and ZnO. However, the device performance is strongly correlated to the electronic properties of the interfacial materials, and here specifically to their work function, surface states as well as conductivity and mobility. It is noteworthy to say that these properties are massively determined by the crystallinity and stoichiometry of the metal oxides. In this study, we investigated aluminum-doped zinc oxide (AZO) as charge selective extraction layer for inverted BHJ solar cells. Thin AZO films were characterized with respect to their structural, optical and electrical properties. The performance of organic solar cells with an AZO electron extraction layer (EEL) is compared to the performance of intrinsic ZnO or TiO(x) EELs. We determined the transmittance, absorbance, conductivity and optical band gap of all these different metal oxides. Furthermore, we also built the correlations between doping level of AZO and device performance, and between annealing temperature of AZO and device performance. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据