4.7 Article

High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets

期刊

SOLAR ENERGY MATERIALS AND SOLAR CELLS
卷 93, 期 1, 页码 136-142

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.solmat.2008.09.010

关键词

Exfoliated graphite nanoplatelets (xGnP); Phase change material (PCM); Paraffin wax; Latent heat storage; Thermal conductivity

资金

  1. Soongsil University Research Fund

向作者/读者索取更多资源

Using exfoliated graphite nanoplatelets (xGnP), paraffin/xGnP composite phase change materials (PCMs) were prepared by the stirring of xGnP in liquid paraffin for high electric conductivity, thermal conductivity and latent heat storage. xGnP of 1, 2, 3, 5 and 7wt% was added to pure paraffin at 75 C. Scanning electron microscopy (SEM) morphology showed uniform dispersion of xGnP in the paraffin wax. Good dispersion of xGnP in paraffin/xGnP composite PCMs led to high electric conductivity. The percolation threshold of paraffin/xGnP composite PCMs was between 1 and 2wt% in resistivity measurement. The thermal conductivity of paraffin/xGnP composite PCMs was increased as xGnP loading contents. Also, reproducibility of paraffin/xGnP composite PCMs as continuous PCMs was manifested in results of electric and thermal conductivity. Paraffin/xGnP composite PCMs showed two peaks in the heating curve by differential scanning calorimeter (DSC) measurement. The first phase change peak at around 35 degrees C is lower and corresponds to the solid-solid phase transition of the paraffin, and the second peak is high at around 55 degrees C, corresponding to the solid-liquid phase change. The latent heat of paraffin/xGnP composite PCMs did not decrease as loading xGnP contents to paraffin. xGnP can be considered as an effective heat-diffusion promoter to improve thermal conductivity of PCMs without reducing its latent heat storage capacity in paraffin wax. (c) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据