4.6 Article

A Fast All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT): Part I. The clear-sky model

期刊

SOLAR ENERGY
卷 174, 期 -, 页码 691-702

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2018.09.056

关键词

Solar radiation; POA irradiance; Radiative transfer model; Surface observation

资金

  1. U.S. Department of Energy (DOE) [DE-AC36-08GO28308]
  2. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office
  3. DOE Solar Energy Technologies Program and its PV subprogram

向作者/读者索取更多资源

The solar energy industry often uses individual steps to empirically compute plane-of-array (POA) irradiance from horizontal irradiance and decompose it to narrow-wavelength bands. Conventional radiative transfer models designed for meteorological applications requires significant computing efforts in practice; however, they provide a physics-based solution of radiance and therefore are capable of computing spectral POA irradiances in a single step. In this study, we integrate the advantages of the current models and develop an innovative radiative transfer model, the Fast All-sky Radiation Model for Solar applications with Narrowband Irradiances on Tilted surfaces (FARMS-NIT), to efficiently compute irradiances on inclined photovoltaics (PV) panels for 2002 narrow-wavelength bands from 0.28 to 4.0 mu m. This study is reported in two parts. Part I presents the methodology and performance evaluation of the new model under clear-sky conditions. The Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS), which was designed to compute clear-sky irradiances, is employed to rapidly provide the optical properties of a given clear-sky atmosphere. The clear-sky radiances in the narrow-wavelength bands are computed by considering three paths of photon transmission and solving the radiative transfer equation with the single-scattering approximation. The Bi-directional Transmittance Distribution Function (BTDF) of aerosols is given by their single-scattering phase function with a correction using a two-stream approximation. The validation analysis confirms that FARMS-NIT has improved accuracy compared to TMYSPEC as evaluated by both surface observations and a state-of-the-art radiative transfer model. This model substantially improves computational efficiency compared to other radiative transfer models though it uses slightly more computing time than TMYSPEC. Part II of this study addresses the model in cloud-sky conditions and will be published as a companion paper.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据