4.6 Article

Thermochemical CO2 splitting reaction with supported LaxA1-xFeyB1-yO3 (A = Sr, Ce, B = Co, Mn; 0 ≤ x, y ≤ 1) perovskite oxides

期刊

SOLAR ENERGY
卷 103, 期 -, 页码 425-437

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2014.02.033

关键词

Solar energy; CO2 reduction; Perovskite oxide; Kinetics

资金

  1. National Program on Key Basic Research Project [2009CB220010]
  2. National Natural Science Foundation of China [21061140361]
  3. Solar Energy Action Plan of Chinese Academy of Sciences [KGCX2-YW-393-1]

向作者/读者索取更多资源

An efficient redox material for two-step thermochemical CO2 splitting reaction requires high chemical yield at relatively low reduction temperature. Herein, the oxides with perovskite structure of formula La(x)A(1-x)Fe(y)B(1-y)O(3) (A = Sr, Ce, B = Co, Mn; 0 <= x, y <= 1) start to release O-2 at 800 degrees C and the largest O-2 production is 11.8 ml/g(perovskite) at 1300 degrees C. However, for these unsupported La(x)A(1-x)Fe(y)B(1-y)O(3) materials, the CO production is low in spite of high reduction yield. ZrO2, Al2O3 and SiO2 are thus considered as supports to disperse La(x)A(1-x)Fe(y)B(1-y)O(3) materials and different supports induce great differences in the reaction activity. By A-site or B-site substitution of LaFeO3, the O-2 releasing temperature has fallen from 1230 degrees C to 800-950 degrees C and the CO production is enhanced 2-3 times. LaFe0.7Co0.3O3 (25 wt%)/SiO2 shows the highest reaction activity among these investigated materials with the O-2 production of 4.0 ml/g(material) (16.0 ml/g(perovskite)) and CO production of 7.6 ml/g(material) (30.4 ml/g(perovskite)) when it is reduced at 1300 degrees C and re-oxidized at 1100 degrees C, and the activity is relatively stable even after 10 cycles of the reaction. By contrast, the CO production is 4.5 ml/g for CeO2 when it is reduced at 1400 degrees C. The estimated activation energy for the reduction step of LaFe0.7Co0.3O3 (25 wt%)/SiO2 is around 89-149 KJ/mol according to different models. The CO generation step of LaFe0.7Co0.3O3 (25 wt%)/SiO2 is mainly controlled by bulk diffusion (D1) at 1000 degrees C and then it turns to first order surface reaction (F1) at 1100 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据