4.6 Article

Optimization of a cooling system based on Peltier effect for photovoltaic cells

期刊

SOLAR ENERGY
卷 91, 期 -, 页码 152-160

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2013.01.026

关键词

Optimization; Photovoltaic cell; Solar energy; Temperature control; Thermoelectric cooling

向作者/读者索取更多资源

Temperature increment is one of the main challenges for solar concentrating photovoltaic systems which causes significant reduction in the cell efficiency and accelerates cell degradation. To overcome this issue, a novel cooling method by using Peltier effect is proposed and investigated. In this approach, a thermoelectric cooling module is considered to be attached to the back side of a single photovoltaic cell. It is assumed that the required power to run the thermoelectric cooling module is provided by the photovoltaic cell itself. A detailed model is developed and simulated via MATLAB in order to determine the temperatures within the system, calculate the required power to run the thermoelectric cooling module and the extra generated power by photovoltaic cells due to the cooling effect. Two approaches are investigated to use the proposed system: in the first approach, the goal is controlling the temperature of the photovoltaic cell and keep it under a specific limit for different conditions. In the second approach, a genetic algorithm based optimization is utilized to find the optimal value of the supplied electrical current for the thermoelectric cooling module which leads to the maximum generated power by the system. The result shows that using thermoelectric cooling modules can successfully keep the photovoltaic cell temperature at a low level by using a reasonable amount of electricity. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据