4.6 Article

Development of a model for calculating the longwave optical properties and surface temperature of a curved venetian blind

期刊

SOLAR ENERGY
卷 83, 期 6, 页码 817-831

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.solener.2008.11.009

关键词

Longwave optical properties; Venetian blind; Effective layer; Surface temperature; Curvature effect

资金

  1. Thailand Research Fund

向作者/读者索取更多资源

This article is about the development of a mathematical model for calculating the longwave optical properties of a curved venetian blind. The calculated optical properties are used to determine the performance of the glass window installed with a venetian blind in terms of thermal comfort. The blind, whose optical properties are considered nonspecular, is modeled as an effective layer. The effect of slat curvature is included in the developed model. A six surface enclosure formed by two consecutive slats is used to analyze for the longwave optical properties of the effective layer. The longwave optical properties, transmittance, reflectance, absorptance and emittance are developed by using the radiosity method. The steady state energy balance method along with the developed longwave optical properties are used to determine the surface temperature of the effective layer. The empirical expression for the total heat flux from the indoor glass window surface with an adjacent venetian blind is adopted in the developed model. The surface temperature of the blind, which is the key parameter for calculating the thermal performance of glass windows with venetian blinds with respect to thermal comfort, is chosen as the parameter used for the model validation. The predicted surface temperature of the venetian blind is compared with the surface temperature of the venetian blind obtained from the measurement. The agreement between the predicted temperature and the measured temperature is good. (C) 2008 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据