4.3 Article

Early response in water relations influenced by NaCl reflects tolerance or sensitivity of barley plants to salinity stress via aquaporins

期刊

SOIL SCIENCE AND PLANT NUTRITION
卷 57, 期 1, 页码 50-60

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/00380768.2010.541870

关键词

aquaporin; barley; elastic modulus; hydraulic conductivity; salinity

资金

  1. Korea Science and Engineering Foundation through the Agricultural Plant Stress Research Center (APSRC) [R11-2001-09201004-0]
  2. Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN), Japan

向作者/读者索取更多资源

Barley varieties, K305 and I743, which are sodium chloride (NaCl) tolerant and sensitive respectively, were hydroponically grown to determine the short-term effects of NaCl on the cell water relations in roots using a cell pressure probe, and on the transcript levels of 10 barley PIP aquaporin genes (HvPIPs) in roots. Stomatal conductance, as an indicator of sensitivity to NaCl, was decreased to less than half values of control upon exposure to 100 mmol L-1 NaCl for 24 h in I743 whereas tolerant variety, K305, was able to maintain original conductance. Osmotic half-times of water exchange in cortical cells allowed for a clear distinction between the two varieties up to 200 mmol L-1 NaCl. With treatment duration of up to 12 h with 100 mmol L-1 NaCl, the elastic modulus was reduced in I743 but increased in K305. Hydrostatic half-times of water exchange in K305 increased rapidly, whereas this value remained unchanged in I743. Application of abscisic acid (ABA) after 1 h NaCl treatment restored the hydraulic conductivity of cells (Lp) in K305 but not in I743 whereas the opposite results were obtained when mercury chloride (HgCl2) was applied, verifying the contrasting gating response of aquaporins in two varieties. Reduced expression of HvPIPs was consistent with the reduction of hydraulic conductivity of both varieties after 24 h NaCl, but without any significant differences between them, indicating the importance of the activities of existing aquaporins rather than de novo synthesis to cope with short-term effects of salt stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据