4.7 Article

Life in the 'charosphere' - Does biochar in agricultural soil provide a significant habitat for microorganisms?

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 65, 期 -, 页码 287-293

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2013.06.004

关键词

Black carbon; Decomposition; Soil microbial ecology; Soil organic matter; Pore volume; Soil-microbe interactions

资金

  1. Welsh European Funding Office under the SEREN Programme

向作者/读者索取更多资源

Biochar application has become a novel and emergent technology for sequestering C, improving soil quality and crop production, and is a potential win-win strategy for ecosystem service delivery. Biochar addition can also stimulate soil microbial activity, and although it is unclear exactly why biochar should benefit soil microorganisms, it is thought that the large surface area and volume of pores provide a significant habitat for microbes. The aim of this study was to determine the level of microbial colonisation of wood-derived biochar that had been buried in an agricultural soil for three years. We have examined the level of colonisation on the internal and external surfaces of field-aged biochar by scanning electron microscopy, and used C-14-labelled glucose to quantify the rates of microbial activity in different spatial niches of the biochar and the surrounding soil. Microbial colonisation of field-aged biochar was very sparse, with no obvious differences between the external and internal surfaces. At the high field application rate of 50 t ha(-1), biochar contributed only 6.52 +/- 0.11% of the total soil pore space and 7.35 +/- 0.81% of the total soil surface area of the topsoil (0-30 cm). Further, 17.46 +/- 0.02% of the biochar pores were effectively uninhabitable for most microbes, being <1 mu m in diameter. The initial rate of microbial mineralization of C-14-labelled glucose was significantly greater in the control bulk soil and the soil immediately surrounding the biochar than on the biochar external and internal surfaces. However, lower C use efficiency values of microbes on, or within, the biochar also suggested lower available C status or differences in the structure of the microbial community in the biochar relative to the surrounding soil. This study suggests that, at least in the short term (<= 3 y), biochar does not provide a significant habitat for soil microbes. While biochar is extremely recalcitrant and largely unavailable to soil microbes, changes in soil physicochemical properties and the introduction of metabolically available labile compounds into the surrounding soil (the 'charosphere') may significantly alter soil microbial activity and structure, which could ultimately affect soil-plant-microbe interactions. Therefore, before the wide-scale application of biochar to agricultural land is exploited, it is important that we understand further how the properties of biochar positively or negatively affect soil microbial communities, and in turn, how they interact with, and colonise biochar. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据