4.7 Article

Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 57, 期 -, 页码 135-143

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.08.010

关键词

Soil respiration; Forest type; Environmental factor; Carbon stock; Semi-arid Loess Plateau

资金

  1. Ministry of Science and Technology of China
  2. Beijing Forestry University

向作者/读者索取更多资源

Understanding the dominant variables driving soil respiration is critically important for predicting soil CO2 emission and assessing the carbon balance of forest ecosystems. In a small catchment of the semiarid Loess Plateau in China, soil respiration and soil biophysical factors were studied on sites of five forest types, comprising plots established in a pure Pinus tabulaeformis plantation, a pure Robinia pseudoacacia plantation, a mixed P. tabulaeformis and R. pseudoacacia plantation, a pure Platycladus orientalis plantation, and a natural Populus davidiana stand. Soil temperature at the 10 cm depth was found to be the most predominant factor controlling the temporal pattern of soil respiration, accounting for 11-40% seasonal variation in the rate of soil CO2 efflux across forest types. By applying an empirical model and the calculated temperature sensitivity of soil respiration (Q(10)) and the rate of basal soil respiration (Rio), annual soil CO2 emission was estimated separately for each forest type using the automatically monitored data of soil temperature at the 10 cm depth. The annual soil CO2 emission varied greatly with forest types and ranged from 647.71 g C m(-2) y(-1) in the P. orientalis plantation to 1448.50 g C m(-2) y(-1) in the natural P. davidiana stand. Annual soil CO2 efflux is better predicted by soil organic carbon content and the amount of carbon in roots, litter and top soil than soil temperature when data are pooled for all plots of the five forest types. A first order exponential analysis indicates that about 77% of the variation in annual soil CO2 efflux is explained by root carbon stock, 63% by the combined carbon stock in roots, litter, and top soil, and 48% by the combined carbon stock in litter and top soil. We conclude that annual soil CO2 efflux can be predicted by carbon pools in roots and soils rather than by soil temperature in watersheds where spatial variation in soil temperature is relatively small in the semiarid Loess Plateau of China. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据