4.7 Article

Microbial function in adjacent subtropical forest and agricultural soil

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 57, 期 -, 页码 68-77

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.07.015

关键词

Dynamics; Enzymes; CLPP; Sugarcane; Cropping; Deforestation; Soil health; Litter decomposition; Nitrification

资金

  1. Sugar Research Development Corporation (SRDC)

向作者/读者索取更多资源

Soil microbial communities and their activities are altered by land use change; however impacts and extent of these alterations are often unclear. We investigated the functional responses of soil microbes in agricultural soil under sugarcane and corresponding native soil under Eucalyptus forest to additions of contrasting plant litter derived from soybean, sugarcane and Eucalyptus in a microcosm system, using a suite of complimentary techniques including enzyme assays and community level physiological profiles (CLPP). Initially agricultural soil had 50% less microbial biomass and lower enzyme activities than forest soil, but significantly higher nitrification rates. In response to litter addition, microbial biomass increased up to 11-fold in agricultural soil, but only 1.8-fold in forest soil, suggesting a prevalence of rapidly proliferating 'r' and slower growing 'K' strategists in the respective soils. Litter-driven change in microbial biomass and activities were short lived, largely returning to pre-litter addition levels by day 150. Decomposition rates of sugarcane and soybean litter as estimated via CO2 production were lower in agricultural than in forest soil, but decomposition of more recalcitrant Eucalyptus litter was similar in both soils, contradicting the notion that microbial communities specialise in decomposing litter of the dominant local plant species. Enzyme activities and community level physiological profiles (CLPP) were closely correlated to microbial biomass and overall CO2 production in the agricultural soil but not the forest soil, suggesting contrasting relationships between microbial population dynamics and activity in the two soils. Activities of enzymes that break down complex biopolymers, such as protease, cellulase and phenol oxidase were similar or higher in the agricultural soil, which suggests that the production of extracellular biopolymer-degrading enzymes was not a factor limiting litter decomposition. Enzyme and CLPP analyses produced contrasting profiles of microbial activity in the two soils; however the combination of both analyses offers additional insights into the changes in microbial function and community dynamics that occur after conversion of forest to agricultural land. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据