4.7 Article

Independent roles of ectomycorrhizal and saprotrophic communities in soil organic matter decomposition

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 57, 期 -, 页码 282-291

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2012.10.004

关键词

Carbon; Decomposition; Ectomycorrhizal; Extracellular enzyme; Fungi; Nitrogen; Saprotroph; Soil

资金

  1. University of Minnesota Department of Plant Pathology
  2. NOAA Climate and Global Change Postdoctoral Research Fellowship
  3. NSF [DBI 1249341, DBI 1046052]
  4. Department of Soil Science
  5. Direct For Biological Sciences [1046115] Funding Source: National Science Foundation
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [1046052, 1249341] Funding Source: National Science Foundation
  8. Division Of Environmental Biology [1046115] Funding Source: National Science Foundation

向作者/读者索取更多资源

The relative roles of ectomycorrbizal (ECM) and saprotrophic communities in controlling the decomposition of soil organic matter remain unclear. We tested the hypothesis that ECM community structure and activity influences the breakdown of nutrient-rich biopolymers in soils, while saprotrophic communities primarily regulate the breakdown of carbon-rich biopolymers. To test this hypothesis, we used high-throughput techniques to measure ECM and saprotrophic community structure, soil resource availability, and extracellular enzyme activity in whole soils and on ECM root tips in a coastal pine forest. We found that ECM and saprotroph richness did not show spatial structure and did not co-vary with any soil resource. However, species richness of ECM fungi explained variation in the activity of enzymes targeting recalcitrant N sources (protease and peroxidase) in bulk soil. Activity of carbohydrate- and organic P- targeting enzymes (e.g. cellobiohydrolase, beta-glucosidase, alpha-glucosidase, hemicellulases, N-acetyl-glucosaminidase, and acid phosphatase) was correlated with saprotroph community structure and soil resource abundance (total soil C, N, and moisture), both of which varied along the soil profile. These observations suggest independent roles of ECM fungi and saprotrophic fungi in the cycling of N-rich, C-rich, and P-rich molecules through soil organic matter. Enzymatic activity on ECM root tips taken from the same soil cores used for bulk enzyme analysis did not correlate with the activity of any enzyme measured in the bulk soil, suggesting that ECM contributions to larger-scale soil C and nutrient cycling may occur primarily via extramatrical hyphae outside the rbizosphere. Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据