4.7 Article

Near infrared reflectance spectroscopy: A tool to characterize the composition of different types of exogenous organic matter and their behaviour in soil

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 43, 期 1, 页码 197-205

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2010.09.036

关键词

Carbon mineralization; Characterization; Compost; Degradability; Indicators; Manure; Near infrared reflectance spectroscopy; Soil organic matter; Van Soest fractionation

资金

  1. Veolia Environnement Group
  2. Veolia Environnement Group

向作者/读者索取更多资源

In addition to total organic carbon and nitrogen, potential organic carbon mineralization under controlled laboratory conditions and indicators such as the indicator of remaining organic carbon in soil (I-ROC), based on Van Soest biochemical fractionation and short-term carbon mineralization in soil, are used to predict the evolution of exogenous organic matter (EOM) after its application to soils. The purpose of this study was to develop near infrared reflectance spectroscopy (NIRS) calibration models that could predict these characteristics in a large dataset including 300 EOMs representative of the broad range of such materials applied to cultivated soils (plant materials, animal manures, composts, sludges. etc.). The NIRS predictions of total organic matter and total organic carbon were satisfactory (R(2)p = 0.80 and 0.85, ratio of performance to deviation, RPDp = 2.2 and 2.6, respectively), and prediction of the Van Soest soluble, cellulose and holocellulose fractions were acceptable (R(2)p = 0.82, 0.73 and 0.70. RPDp = 2.3, 1.9 and 1.8, respectively) with coefficients of variation close to those of the reference methods. The NIRS prediction of carbon mineralization during incubation was satisfactory and indeed better regarding the short-term results of mineralization (R(2)p = 0.78 and 0.78, and RPDp = 2.1 and 2.0 for 3 and 7 days of incubation, respectively). The I-ROC indicator was predicted with fairly good accuracy (R(2)p = 0.79, RPDp = 2.2). Variables related to the long-term C mineralization of EOM in soil were not predicted accurately, except for I-ROC which was based on analytical and well-identified characteristics, probably because of the increasing interactions and complexity of the factors governing EOM mineralization in soil as a function of incubation time. This study demonstrated the possibility of developing NIRS predictive models for EOM characteristics in heterogeneous datasets of EOMs. However. specific NIRS predictive models still remain necessary for sludges, organo-mineral fertilizers and liquid manures. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据