4.7 Article

Afforestation of semi-arid shrubland reduces biogenic NO emission from soil

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 41, 期 7, 页码 1561-1570

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2009.04.018

关键词

Afforestation; Semi-arid ecosystem; Nitric oxide; Soil biogenic gases emission; Ecosystem; Nitrogen; Upscaling; Pinus halepensis

资金

  1. European Science Foundation (ESF NinE Exchange Grant to I.G.)
  2. German Academic Exchange Service (DAAD)
  3. Max Planck Society
  4. JNF (KKL)

向作者/读者索取更多资源

Nitric oxide (NO) plays a central role in the formation of tropospheric ozone, hydroxyl radicals, as well as nitrous and nitric acids. There are, however, large uncertainties around estimates of global NO emissions due to the paucity of data. In particular, there is little information on the rate of NO emission and its sensitivity to processes such as land use changes in dry environments. Here we report on a two-year study on the influence of afforestation on soil NO fluxes in the semi-arid afforestation system in Southern Israel (Yatir forest, mean annual precipitation similar to 280 mm). Laboratory incubations were carried out under seasonally defined conditions of soil moisture and temperature using soils sampled in different seasons from the native shrubland (taken both under shrub canopy and in the inter-shrub areas), and from the adjacent similar to 2800 ha, 40-year-old pine afforestation site. Combining laboratory results with field measurements of soil moisture and temperature, we up-scaled soil-atmosphere NO fluxes to the ecosystem level. The different microsites differed in their annual mean NO release rates (0.04, 0.14 and 0.03 mg m(-2) d(-1) for the shrubland under and between shrubs and for the forest, respectively), and exhibited high inter-seasonal variability in NO emission rates (ranging from zero up to 0.25 mg m(-2) d(-1) in the wet and dry-rewetting seasons, respectively), as well as in temperature responses. Up-scaling results to annual and ecosystem scales indicated that afforestation of the semi-arid shrubland could reduce soil NO emission by up to 65%. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据