4.7 Article

Evaluation of soil compaction effects on soil biota and soil biological processes in soils

期刊

SOIL & TILLAGE RESEARCH
卷 109, 期 2, 页码 133-143

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.still.2010.05.010

关键词

Bulk density; Soil porosity; Soil structure deterioration; Soil organisms; Soil biodiversity; Threshold values

资金

  1. Federal Institute for Materials Research and Testing
  2. German Environmental Protection Agency [FKZ 35013009]

向作者/读者索取更多资源

Investigations on soil compaction focused mainly on effects on soil physical parameters and on plant growth. Nevertheless, a substantial number of papers deal with effects of soil compaction on soil organisms (soil fauna, soil microorganisms) and biologically driven processes in soils (e.g., macropore formation, respiration rates, N-mineralisation). In view of soil and soil functions protection, there is an essential need to identify soil compaction threshold values with respect to soil biota and soil biological processes. No such values are currently available. Thus the aim of our study was to evaluate literature on the effects of soil compaction mainly in agricultural soils on soil organisms and soil biological processes (e.g., respiration, nitrification); to identify relevant parameters which are helpful for assessing soil compaction from the soil biological point of view; and to find out whether threshold values of soil structure parameters proposed by soil physicists correspond to harmful impacts on soil organisms and biological processes in soils. Our literature review showed that due to the high variability of experimental situations and conditions in the evaluated papers, especially in papers describing field investigations, no general effect of soil compaction was found. Negative and positive effects occurred with slight compaction as well as with strong compaction. A verification of the thresholds published to date for soil compaction was not possible based on the data evaluated. However, the fact that above an effective bulk density of 1.7 g cm(-3), only negative effects on microbial biomass and C-mineralisation were found confirms this value, proposed by soil physicists, also from the soil biological point of view. In order to provide a scientifically meaningful data base for the assessment of soil compaction, effects on soil biodiversity, related functions and processes, we recommend considering the following site and soil properties as essentials: land use, climate, soil type, texture, bulk density; soil organic matter content; pH value; soil moisture (water content/water tension); pore volume; macroporosity and air and/or water conductivity. (C) 2010 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据