4.7 Article

Osteogenic/Angiogenic Dual Growth Factor Delivery Microcapsules for Regeneration of Vascularized Bone Tissue

期刊

ADVANCED HEALTHCARE MATERIALS
卷 4, 期 13, 页码 1982-1992

出版社

WILEY-BLACKWELL
DOI: 10.1002/adhm.201500341

关键词

-

资金

  1. National Research Foundation
  2. Ministry of Education, Science and Technology, Republic of Korea [2011-0028796]
  3. Korea Institute of Science and Technology (KIST) [2E25260]
  4. National Research Foundation of Korea [2011-0028796] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Growth factors (GFs) are major biochemical cues for tissue regeneration. Herein, a novel dual GF delivery system is designed composed of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and alginate microcapsules (MCs) via an electrodropping method. While bone morphogenetic protein (BMP)-2 is encapsulated in the PLGA NPs, vascular endothelial growth factor (VEGF) is included in the alginate MCs, where BMP-2-loaded PLGA NPs are entrapped together in the fabrication process. The initial loading efficiencies of BMP-2 and VEGF are 78% +/- 3.6% and 43% +/- 1.7%, respectively. When our dual GF-loaded MCs are assessed for in vitro osteogenesis of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) on 2D and 3D environment, MCs contribute to much better UCB-MSCs osteogenesis as confirmed by von Kossa staining, immunofluorescence (osteocalcin, collagen 1), calcium content measurement, and osteogenic markers expression. In addition, when dual GF-encapsulated MCs are combined with collagen and then applied to 8 mm diameter rat calvarial defect model, the positive effects on vascularized bone regeneration are much more pronounced; micro computed tomography (CT) and histology analyses exhibit 82.3% bone healing coupled with 12.6% vessel occupied area. Put together, current study indicates a synergistic effect of BMP-2/VEGF and highlights the great potential of dual GF delivery modality (PLGA NPs-in-MC) for regeneration of vascularized bone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据