4.6 Article

Self-propelled droplets for extracting rare-earth metal ions

期刊

SOFT MATTER
卷 10, 期 33, 页码 6316-6320

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4sm01001a

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS)
  2. [24656469]
  3. [2550069]
  4. Grants-in-Aid for Scientific Research [24656469] Funding Source: KAKEN

向作者/读者索取更多资源

We have developed self-propelled droplets having the abilities to detect a chemical gradient, to move toward a higher concentration of a specific metal ion (particularly the dysprosium ion), and to extract it. Such abilities rely on the high surface activity of di(2-ethylhexyl) phosphoric acid (DEHPA) in response to pH and the affinity of DEHPA for the dysprosium ion. We used two external stimuli as chemical signals to control droplet motion: a pH signal to induce motility and metal ions to induce directional sensing. The oil droplets loaded with DEHPA spontaneously move around beyond the threshold of pH even in a homogeneous pH field. In the presence of a gel block containing metal ions, the droplets show directional sensing and their motility is biased toward higher concentrations. The metal ions investigated can be arranged in decreasing order of directional sensing as Dy3+ >> Nd3+ > Y3+ > Gd3+. Furthermore, the analysis of components by using an atomic absorption spectrophotometer reveals that the metal ions can be extracted from the environmental media to the interiors of the droplets. This system may offer alternative self-propelled nano/microscale machines to bubble thrust engines powered by asymmetrical catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据