4.7 Article

Directed Neural Stem Cell Differentiation with a Functionalized Graphene Oxide Nanocomposite

期刊

ADVANCED HEALTHCARE MATERIALS
卷 4, 期 9, 页码 1408-1416

出版社

WILEY
DOI: 10.1002/adhm.201500056

关键词

graphene oxide; conducting polymer; neural stem cell; surface functionalization; neural biomaterial

资金

  1. NSF [0748001, DGE-0549352]
  2. University of Pittsburgh Provost's Development Fund

向作者/读者索取更多资源

Neural stem cell (NSC) transplantation has the potential to restore function to diseased or damaged nervous tissue, but poor control over cell survival, differentiation, and maturation limits therapeutic prospects. Engineered scaffolds that have the ability to drive neural stem cell behavior can address these limitations facing cell transplantation. Conducting polymers, which have the ability to electrically interface with cells, are attractive scaffolding candidates, but they lack the capacity for simple covalent modification, which would enable surface patterning of biomolecules. In this work, the NSC scaffolding performance of a nanocomposite composed of conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and graphene oxide (GO) nanosheets (GO/PEDOT) is investigated. The GO/PEDOT material is nontoxic and improves NSC differentiation toward the neuronal lineage. Biomolecules interferon- (IFN) and platelet-derived growth factor (PDGF) that selectively promote neuronal or oligodendrocyte lineage differentiation, respectively, are covalently cross-linked to the surface of the GO/PEDOT nanocomposite via carboxylic acid functional groups provided by GO using carbodiimide chemistry. The surfaces support a larger population of neurons when modified with IFN and a larger population of oligodendrocytes when modified by PDGF. This work demonstrates the customizability of GO/PEDOT for cell scaffolding applications and underlines its potential for controlling NSC behavior to improve therapeutic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据