4.6 Article

Tethered non-ionic micelles: a matrix for enhanced solubilization of lipophilic compounds

期刊

SOFT MATTER
卷 8, 期 32, 页码 8456-8463

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm25708d

关键词

-

向作者/读者索取更多资源

A specific mechanism for tethering micelles composed of non-ionic detergents is presented. The mechanism does not require any precipitant, high ionic strength or temperature alterations. Rather, it relies on complexes between hydrophobic chelators embedded within the micelle and appropriate metal cations in the aqueous phase, serving as mediators. The approach was applied to: (i) four non-ionic detergents (tetraethylene glycol monooctyl ether (C8E4), n-dodecyl-beta-D-maltoside (DDM), octyl beta-D-1-thioglucopyranoside (OTG), and n-octyl-beta-D-glucopyranoside (OG)), (ii) two hydrophobic chelators (bathophenanthroline and N-(1,10-phenanthrolin-5-yl) decanamide, Phen-C10) and (iii) five transition metals (Fe2+, Ni2+, Zn2+, Cd2+, and Mn2+). The mandatory requirement for a hydrophobic chelator and transition metals, capable of binding two (or more) chelators simultaneously, was demonstrated. The potential generality of the mechanism presented derives from the observation that different combinations of [detergent : chelator : metal] are able to induce specific micellar clustering. The greater solubilization capacity of tethered-micelles in comparison with untethered micelles was demonstrated when the water insoluble aromatic molecule fluorenone (8 mM = 1.44 mg mL(-1)) and two highly lipophilic antibiotics: chloramphenicol (5 mM = 1.62 mg mL(-1)) and tetracycline (1.5 mM 0.66 mg mL(-1)) were solubilized - only when the micelles were tethered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据