4.6 Article

Polymer nanocomposites: polymer and particle dynamics

期刊

SOFT MATTER
卷 8, 期 42, 页码 10813-10818

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm26325d

关键词

-

资金

  1. National Science Foundation [DMR-1006323, KUS-C1-018-02]
  2. U.S. DOE [DE-AC02-06CH11357]
  3. Direct For Mathematical & Physical Scien [1006323] Funding Source: National Science Foundation

向作者/读者索取更多资源

Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites' viscosity rises with increasing particle concentration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据