4.6 Article

Enhancing tracer diffusivity by tuning interparticle interactions and coordination shell structure

期刊

SOFT MATTER
卷 8, 期 15, 页码 4083-4089

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1sm06932b

关键词

-

资金

  1. Welch Foundation [F-1696]
  2. National Science Foundation [CBET-1065357, CBET-0828979]
  3. Div Of Chem, Bioeng, Env, & Transp Sys
  4. Directorate For Engineering [1065357] Funding Source: National Science Foundation

向作者/读者索取更多资源

This study uses a combination of stochastic optimization, statistical mechanical theory, and molecular simulation to test the extent to which the long-time dynamics of a single tracer particle can be enhanced by rationally modifying its interactions-and hence static correlations-with the other particles of a dense fluid. Specifically, a simulated annealing strategy is introduced that, when coupled with test-particle calculations from an accurate density functional theory, finds interactions that maximize either the tracer's partial molar excess entropy or a related pair-correlation measure (i.e., two quantities known to correlate with tracer diffusivity in other contexts). The optimized interactions have soft, Yukawa-like repulsions, which extend beyond the hard-sphere interaction and disrupt the coordination-shell cage structure surrounding the tracer. Molecular and Brownian dynamics simulations find that tracers with these additional soft repulsions can diffuse more than three times faster than bare hard spheres in a moderately supercooled fluid, despite the fact that the former appear considerably larger than the latter by conventional definitions of particle size.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据