4.6 Article

In situ observation of azobenzene isomerization along with photo-induced swelling of cross-linked vesicles by laser-trapping Raman spectroscopy

期刊

SOFT MATTER
卷 8, 期 35, 页码 9127-9131

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2sm25963j

关键词

-

资金

  1. National Science Foundation of China [21074123, 91027024, 50973101, 20974107]

向作者/读者索取更多资源

Laser-trapping Raman spectroscopy (LTRS) is adopted to detect the photo-induced isomerization of azobenzene in the cross-linked membrane of a single vesicle, which is self-assembled first by an amphiphilic copolymer, poly(N-isopropylacrylamide)-block-poly{6-[4-(4-pyridyazo)phenoxy] hexylmethacrylate} (PNIPAM-b-PAzPy6), and then cross-linked by reaction between 1,3-dibromopropane and pyridine groups in the copolymer chain. A series of polymer vesicles with different cross-linking degrees were made to meet the need of vesicles with different softness during this research work. Vesicles with 0.0% and 18.7% cross-linking degrees have characteristic photo-induced swelling-shrinking, others with higher cross-linking degrees do not. The isomerization of azobenzene is observed in situ by LTRS along with photo-induced swelling of single vesicles with different cross-linking degrees. Results from analysis of the obtained Raman spectra show that photo-induced isomerization of azobenzene is a trigger of the photo-induced swelling process and the swelling degree is mainly dependent on the degree of cross-linking, namely, the softness of the polymer vesicle. The former result is different from that obtained by analysis of UV-Vis spectroscopy for vesicle solutions and shows that photo-induced swelling-shrinking vesicles can be constructed by amphiphilic copolymers bearing azobenzene units in the minority.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据